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This work 1s concerned wilth the analysis of the appesrance of a single fre-
quency oscillation in a system of dynamic objects with a single degree of
freedom of a determined type under the action of weak intercoupling. Differ-
ent approaches to the solution of the synchronization problem are considered,
and the reglons of their applicability are indicated. The necessary and suf-
ficlent conditions for the stability of synchronous oscillation are given for
a system of essentlally nonlinear different objects. For the particular case
of almost identical objects, these conditions coincide with the generalized
integral stabllity criterion [1 and 2]. The general statement of the problem
of synchronization of dynamic systems, numerous examples of synchronization
which can be encountered ln nature or in technology, and also an exhaustive
bibliography, can be found in the work of Blekhman {1].

1, Let us consider a system composed of n dynamic objects having a sin-
gle degree of freedom, and positions determined by the generalized coordi-
nates ¢,,...,4,. We shall assume that the manner in which the generallzed
coordinates are Introduced, is dependent of the nature of the coupling bet-
ween the objJects, Thus the generalized coordinate ¢, must be considered as
the generallzed partial coordinate of the {¢th object, without regard for
the presence or absence of a coupling.

Furthermore we shall assume that by examination of the coupled system, we
can Introduce the coupling parameter  which characterizes the degree of
distorsion brought by the coupling to the motlon of the object. Without
making any speclal assumptions on the magnitude of the coupling parameter,
we shall suppose that it is sufficlently small.

The coupling between the objects does not introduce further degrees of
freedom, and, in the general case, gilves to the objects a periodical action
of frequency v , external to the system. The partial objects, i.e. the
objects in the absence of interactlon, are self-contained and represent sys-
tems of materlial polnts subjected to stationary coupling.
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With the given assumptions, the generalized Lagrange function of the coup-
led system has the form

L = ElLi 91, @) + 1Ly (91, 91 -+ -3 Gno G, VE) +p% .o (1.1)

In Expression (1.1), by virtue of the generality of the introduction of
the generalized coordinates, the partial Lagrangian 1, 1s independent of
the coupling parameter, and the Lagrangian [, 1s only a function of the
generalized partial coordlnates and velocitles of the system, and of the
nondimensional time 1 = vyt

Finally, we shall assume that the coupling between the objects has a
purely conservative character with the accuracy up to the order 2, and
furthermore, that all nonpotential forces in the system do not depend expli-
citly upon the time.

Thus, a nonnegligible fractlion of the generalized nonpotentlal force does
not depend upon the coupling factor and has a partial character

Qi = Qi (a1, 0

The generalized force ¢, characterizes the inflow and outflow of exter-
nal energy which gives to the object an autooscillating character. In th.
absence of coupling, only this force stabllizes the energy level, at which
the motion of the object occurs. The generalized pulses

oL 9L, 4Ly 3 .
Pi=5q—i-"=a—q‘;r+llw+ll (f=1,...,n) (1.2)

introduced by the expression of the total kinetlic energy of the system are
dependent generally upon the type cf coupling. This dependence dlsappears
(exactly up to the order u ) only in the case of potential or force coupling
when aLo/ 6q{ = 0.

Therefore the generalized vel~clties obtalned after transformation of the
system (1.2) by means of the new canonical variables 2,5 p; (¢t =1,.0., n)
can be represented In the general case 1n the form of a serles of the small
coupling parameter

QG = v (Qi’ pi) + pyv (qlv P v o o2 Gny Pns T) + p'z ...

oL, (q., v,
) (1.3)

1 9y,

We shall substitute the series (1.3) in the generalized Hamilton function
o’ a coupled system

. n (1.4)
H =§1P19i' —L =§1H{ (Qh pi) —'HLo (qb Vyy oo vy Qny Uns T) ‘+’P’ ..

where the partial Hamiltonian of the ¢th object is
H; = p;v; (g, p) — Li (91, %) i=1,...,n (1.5)

Thus, the equation of motion of a coupled system of objects in the canon-

lcal torm 1is
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. OH d
¢ — 5 = ugﬁfﬂx’..-. pi-l———Q{ uaq +pt.

op;
(i=1,...,n) (1'6)
2. If no potential forces ¢, are applled, the motion of isolated obJects

(u = 0) 1s described by a system of equations which can be broken down into
n 1nependent purely conservative subsystems

OH (4", Py) _0H (g B)
o __ i\1jr Py o __ {\14 0 Mg .
9 = —gp P= g i=1,.. .n (2.1
Each subsystem (2.1) in some region ¢, of the partial phase plane (g,p)
has the general solution

— o
q° = z; (Y1, 83), =y (Y1, 1) (2.2)
of a llbration or rotation type with a 2p period for its fundamental
rapldly rotating phase

Y =0 (s;) ¢ + o 2.3)

in the sense that

z (P + 27, 8;) = 2 (Pi, s1) + 100 yi (r + 2m, 8) =y (Y &) (2.4)

Furthermore, the vy, do not depend upon the values s,, and the Hamilton-
lan function of the partial object H,(Qi, pl), as 1t can be easily shown,
is y,-periodic in g4, for y,# O.

The general solution of (2.2) inslde the regicn ¢, depends in a continu-
ous manner upon the arbitrary phase shift q«,, and upon the parameter of
energy, the lntegral of force s, introduced by the relation

(\P,, s)

an

5= S 2 (00 ) iy (2.5)

The integral of force which is single-valued and continuous inside ¢, is
related to the integral of energy #, (x,,y,) = h,(s8,).

The frequency of motion (angular velocity) of the object, which is intro-
duced by the relation dhi“ﬁ 06
(’)i(si)=”'E_ (2.6)
in the general case depends upon the energetic level and can change inside
¢, within a certain finite (or infinite) interval (frequency range)

0 <y < 0,

As we consider the system (1.6) which describes the motion of the coupled
objects, we shall assume that the nonpotential functions ¢@,({g,,v,), the
Lagrangian of coupling L, (qy, ¥y - + 5 Qns Un, ¥), @5 well as all the com-
ponents of order equal or superior to . ®, are bounded, analytic with respect
to all their arguments, vy,-periodic in their variables ¢, and 2n-perlodic
in r inside a region of the 2n-dimensional phase space of the system, such
that the pairs (g,,p,) are located inside ¢,.
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3. Let us make in (1.6) the canonical transformation of variables

g = z; (¢;, J4) Pi = Yi (s, J4) (i=1,...,n 3.1
which 1s possible, since by virtue of (2.5)

39,07, 0,37, = ' (3.2)

We come to the followlng specific system wlth respect to the canonical
variables "force~-angle"

' . ox oL
Ji— Qi p,aq) +mi..., (Pi'—mi("i)‘{'{[iiq‘ p’a.lo—f—p'2

((=1,...,n) (3.3)

In the consideration of system (3.3), 1t 1s necessary to keep in mind, as
a consequence of the small coupling, the synchronous mode 1s possible for the
system, if, in the system consisting of the partial objects isolated from
one another 1t 1is possible to have motions which are from both the quantita-
tive and the qualitative points of view, close to the real synchronous ones
on a finite but sufficiently large interval of time. Then the generating

system can always be chosen such that 1t really admits a solution of the
required type (*).

Let the frequency ranges of the objects be small

0® — oW =0@) o o (i) =k +pe’(/y) (3.4)
then, the system obtalned from (3.3) for u = 0 has, 1n the general case,
a multiple frequency mode characterlzed by the partial frequencles A ,...,%,
Its energetic level 1s stabilized by the action of the nonpotential forces

Q,5.-+5 ¢, In such a case the synchronous generating solution can occur
only when the condition

M= ...=h =V (3.5)
is fulfilled.
If the frequency ranges of the objects are not small, the nonpotential
forces in the partlal objects begin to behave as frequency stabilizers., In
order to have a synchronous solution of the generating system, some rigorous

conditions must be imposed on them.

In a system of essentially different objects, the synchronization is pos-
sible if the stabllizing action of the nonpotential forces does not have an
effect on the generating approximation, 1l.e. if it is small and, consequently,
does not exceed the synchronizing actions transmitted by the coupling. Thus,
it was natural to assume that the inflow and outflow of energy into the par-

tial object . .
Qi (¢is ¢°) = pF; (¢ir @) (3.6)

are small.

*) Considering here the generating system, we suppose that the complemen-

tary terms of thc order u can be separated from the left-hand side of
Equations (3.3)
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Therefore, the generating system of equations (3.3) coincides with (2.1)
and admits a synchronous solution if the intersection of the frequency ran-
ges of the separate generating objects

n
((,)(1)’ (,)(2)) = ﬂ (mi(l), Q)i(ﬁ!)) (37)
i=1
is not empty and includes the frequency v of the external force.

This last case 1s very important indeed, because by applying to it the
methods of the perturbatlion theory, we could trace the drift of the motion
frequencles of the different objects while the synchronous mode builds up,
On the contrary, the conslderation of the isochronous generating approxima-
tion, for 1nstance for the degenerated quasilinear formulation, leads essen-

tilally to the problem of the bullding up of phase shifts, amplitudes, and so
on.

The different particular cases of coupling of autooscillating systems by
means of small 1nternal forces, are related to the study of the isochronous,
generally linear generating approximation already considered in the litera-
ture [3 and 4]. Thus, obviously, we could always register the absence of a
synchronous mode for the system in tvhe case of essentlally different partial
freqQuencles,

We shall consider the problem of the interaction of essentially nonlinear
objects when the system can adjust itself to the external force frequency in
a sufficlently large range determined by the equality (3.7). On the basis
of this study, we shall wrlte the equations of the motion of a coupled sys-
tem of objects with respect to the new "phase-frequency” variables, which,
according to (3.6) has the form

. oz oL
13 1 0
W = Flo) (——a iFi-{———)-}—pf“...

* axi ol
(Pi—(ﬂi—_-—,s(Lm)(ga;I*i'{-m)p“... (i=1,...,n) (3.8)

The transformation to "phase-frequency" variables, more characteristic of
synchronization prqblems, does not contaln singularities since everywhere in
the phase domain of the system

By (o) = (@) 2 1 dhil@) _ 5, (3.9)

4, First of all, generallzing somewhat the problem, we shall consider
the interaction of essentially nonlinear, almost conservative objects,
described by the followlng system with a multidimensional rapidly rotating
phase

of =pYi(p, 0, 7) +p. .., o =0+ pX; (@, 0, 7) +p*...  (41)
Here
Yi (‘P, ®, T) = Y‘l (‘Pn o o oy q)'n; Wy, o v oy Wy T)
Xi @0, 7)) =X (@ 1 Pri @1, « 0, 03 T) (i=1,...,n) (4.2)

are analytic in a certain domain ¢ of the phase space of the system, have
a 2r perlod with respect to the rapidly rotating phase o, (1=1,..., n)
and to the nondimensional time 1 = yt .
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The analysis of the system (¥.1) is essentlally possible on the basis of
the generallized averaging method developed lately in the work of Volosov 2.
However some mathematical difficulties arise. Therefore we shall confine
ourselves to the analysis of the synchronous mode in the system and 1ts small
nelghborhood for a sufficiently small y by using Poincaré's method.

The generating system

o- o o

0" =0, 7 =0° (i=1,...,n) (4.3)

has a general solutlon
o =v, @ =+ o (4.4)
which depends on 2 arbitrarily chosen variables v, and gq,.
The generating solution 1s characterlized by
Vi=...=v, =W (4.5)

and the phase shifts are single roots of the system [6]
an
1
Py (O30 ves G) = 5 5 Y; [v G T O Ve ey Vi 7] dT = 0(4.6)

o i=1,.., n)

The fulfilment of conditions (4.5) and (4.6) guarantees the existence of

a solution of the system (4.1) having a %F period in ¢ . Successive peri-

odlc approximations to this solution can be sought in the form of the series
o; = v + poV -pt.. ., Qi =T+ o+ ppW +pdoo. (47)

Analyzing the local stabllity of the synchronous motlon (4.7} we shall
write the equations of the varlations for the system (4.1) considered

T =e 2 G+ (BT e

i=1

Here the parentheses mean that the corresponding quantity is calculated
for the generating approximation. Let us introduce the new variables

U, = estoity,, V, = estwiy, (4.9)

where a(u) 18 the characteristic exponent which we write in the present
case [7] as a series
a(p) = aph + ap + agp’s +pd ... (4.10)
Now, the purpose of the problem is the determination of the existence
conditions: of the perlodic solution of the system

do phau; +p {-—— au; 4+ il [(%) v; + (4.11)
j=

dt
+ (o) wi]} — wregu + w2 . .

7
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(4.1%)
'dgvti u; — phoa; +P{_ asv; + 2 [(ax:) v; + e

8X

+ (5o ® ]} Whago + pt .

We shall seek for successive periodic approximatlions to the solutions of
the system (4.11) in the form of series

u, = u;° + p,‘/:.ui(l) 4+ p,ui(ﬁ) + p’/:

v = v + who@ + ppl® +pth .. (4.12)
The general periodic solution of the zero approximation equation
du®/ dt = 0, dv° [ dt = u° (4.13)
depends upon » arbitrary constants x, and has the form
°=0, v°=M; (4.14)
the first approximation equation
du,v [ dt = 0, do /[ dt = u® — a,M; (4.15)
has always the perlodical solution
M = a,M;,, v = N, (4.16)
which depends on 2, constants ¥, and »¥,. |
The perlodic solution of the second approximation equations (4.17)
n n
S e A it 3 [55) ]
exists 1if
Z M; (-—_—al’bﬁ) =0 (i=1,...,n) (4.18)
j=1

and has the form

t
u® = a,N; + agM; + D; — a*Myt +21M a-og (Yy) dt (4.19)
£ .

2 = Cy + Dyt — My’ 2} M,aa [(Xi) + S (¥ de) de
i=1

In Equation (%.19) the constants ¢, are arbitrary and
anfv

t
D, = Z Mz S [0+ §@oa)a @20
3 0
The condition of nontriviality of the solution of the system (4.18)
P,
[3—0‘7* — %8| =0 (4.21)

18 used for determination of the first approximations to the real character-
istic exponents.
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The existence condition of the perlodic solution of the first group of
the third approximation equations

- = 2 [({—jﬁ) — af&,,-] N;—2a,0,M; —

an/v

—a M, (%——t)—[—aliM,-%t—;*— S [(X,)+S Y,)dt]dt— (4.22)

=
3 al t S gy (9Y
—ay ) M5 S (Y;)dt +a, ) Mi(’a‘of)
j=1 To j=0 ]

can be brought to the form

n
9P, OR; | P
El (t’imi aﬁﬁn) N = a, [2a2M{ 21 (E + av:)M-"] (4_23)
Here 9
Ri(ag, o0y 0p) = SX [t 4 ay,...T+ vy ..., vy Tldt (4.24)

0
The presence of the periodic solution of the second group of the third

approximation equations is guaranteed by the cholce of proper integration
constants when the system (4.22) is integrated.

The second approximation to the characteristic exponents are determined
from the conditions of solvabllity of the heterogeneous system (4.23) with
respect to the unknown N,

-1

a2=(2§1M1M,*) é (gf + %5 )MM* (4.25)

The numbers ”1* (¢ =1,..., n) are a solution of the system which is
coupled with the system (4.18)

Z M <Q_J___a126ﬁ) =0 (i=1,...,n) (4.26)

The synchronous mode of the system ls asymptotically stable if
Rea; =0, Rea,<<0

5. Applylng now the results obtained 1n the prevlous section, 1n the
study of the synchronous solutions of the system (3.8), we write the basic
equations whilch determine the generating phase shifts in the form

Pioy, .. o) = (e + 5m) =0 t=t..,m  (5.1)
where
T dx; ¢
fi= S(Fi) dg, Al 0) =5 { (Lo)dr (5.2)

0

is the average work on a period of the nonpotential force of the partlal
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object and the integral of force of the coupling in the generating approxi-
mation.

The determinant of the system for the determination of the first approxi-
matlion to the characteristic exponents

n
Lij 28. ) ( PA ) 5.3
— a2 M; =0 L = mmmm (5.3)
g (ki(v) 1 ”) ] 4™ foy0a;
j=1
can be written in the following symmetrical form:

dlmwﬂnw—hm%%n=o (5.4)
i=1

A sufficlent, but obviously nonnecessary condition for the roots of the
determinant (5.4) (Im g2 = 0) to be real is that at least one of the quad-
ratic forms corresponding to the matrix

1251
or diag (k, (v), . . ., kn (v)), be positive or negative definite. The presence
of a complex root is possible if there is a simultaneous change in the sign

of these forms; 1t 1s characterized by an identical transformatlon into zero
of the quantity

n
ki (v)| M [?
i=1
computed for the gilven root.

In the case of 1ldentical, purely conservative objects (i, (v)=...= x, (v)=%)
the necessary condition of stabllity a,3< 0 reduces to the requirement of
an extremum (maximum or minimum depending upon the sign of % ) for the inte-
gral of force of the coupling A and leads to the formulation of a general-
ized integral stability criterion. The intgral criterlon can also be gene-
ralized in the case of an internal synchronization for a system of almost
identical objects of the considered type [2]

The solution of the system
n

2 (kji(jw — ax0y) M;* =0 (5.5)

coupled with (5.3) can obviously be obtalned from the solution of the system
(5.3) in the following manner:

Mi* = kj ('V) Mj (56)
1f, furthermore, we take into consideratlon that
1 A
Ri (@ oo t) = — 5 (1% +55) (5.7)

where the quantities p* are independent of the generating phase shifts,
the expressions of the second order approximation of the characteristic expo-
nents take the form
n -1 n
A A af;
ay = {2 D k(v 2) _ 1 T8 L Ty .
2= (22 k) M2) D | — g gage g O] M,

i=1 i,7=1
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or

i

n -1 n

1 0f;

as= (2 k) M2) XL (5.8)
i=1 i=1

It should be remembered that

27

o= ki (v) 5 | (5) do (5.9)
1]

The fulflilment of the asymptotic stability condition gq,< O 1s thus only
possible i1f nonconserative forces are present in the system.

In a purely conservative system, the first approximations to the character-
istlic exponents do not change, but the second approximations become ldenti-
cally equal to zero.

We shall notice that 1n the particular degenerate case of a single object
(n = 1) the conditions o: exlstence and stability of a synchronous mode of
the system are in agreement with the corresponding relatlions obtained by
Kats [8].

The author is thankful to I.I. Blekhman for his discussion of the work.
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